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Model Architecture
q FastPitch[6]  Feedforward Transformer TTS model with pitch and 

duration predictors for mel spectrogram generation. We added three 
embedding layers to condition the encoder output on GTR labels.

q StyleTTS[7]  Two-stage TTS model that captures prosody and emotion. 
We replaced the style encoder with a GTR embedder, retaining other 
pre-trained components.

q Current speech synthesis excels in emotion but falls short in capturing nuanced 

articulatory features achieved by professional voice actors.

q This study introduces a novel GTR framework and dataset to improve control over 

expressive speech synthesis by focusing on Glottalization, Tenseness, and Resonance.

q Experimental results show controllability in expressive TTS, with user studies confirming 

GTR-based models in capturing articulatory nuances across various speech dimensions.
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Dataset Description
q 3.6 hours of 48Khz/24bits HQ speech audio 
q 2500 clips, ~6 seconds each, representing one of 

the 125 unique GTR combinations. 
q All recorded by a professional 30-year-old male 

Mandarin voice actor
q Fully accessible under CC BY-NC-ND 4.0 license

Training
q FastPitch Pre-trained on AISHELL3[8] for 80 epochs, then fine-tuned for 

3000 epochs on GTR-Voice with GTR label embeddings.
q StyleTTS Pre-trained on Libri-TTS (460 hours) for 200 epochs. GTR 

embedder trained for 500 epochs using an RTX 3090, fixing other pre-
trained weights.

q Evaluation Setup User study with 60 participants, 40 webpages (20 Chinese, 20 English). Participants 
compared model-generated speech with a reference and rated MOS.

q MOS Scores Both models scored above 3.00, laying the foundation for controllability experiments.
GTR Controllability

q Glottalization FastPitch: 67%, StyleTTS: 57%. Best for Creaky Voice, worst for Slack Voice (StyleTTS).
q Tenseness FastPitch led except for Laxest (StyleTTS: 68%). Significant accuracy gaps favoring FastPitch.
q Resonance Highest for Chest Voice (79% FastPitch, 71% StyleTTS). StyleTTS struggled with Head Voice.
q Models Average FastPitch: 67.07%, StyleTTS: 57.14%. Best for R dimension, lowest for G dimension.
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To learn more about the GTR-Voice,
visit https://GTR-Voice.com


