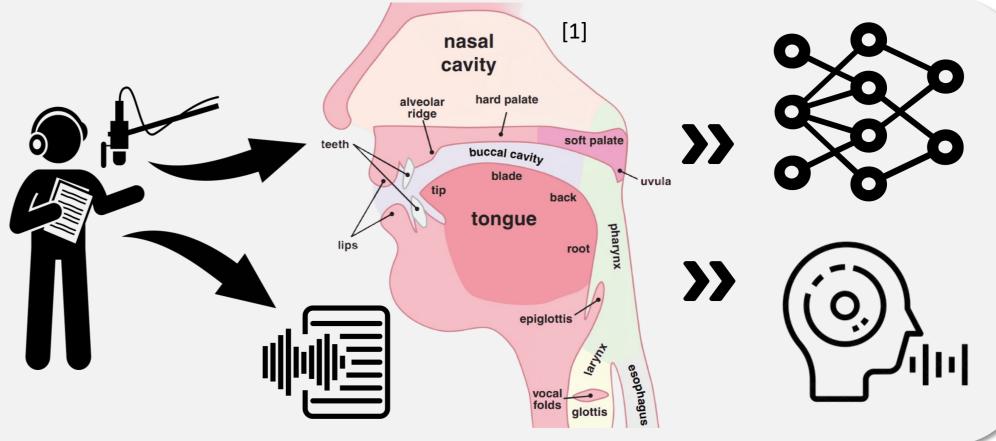
Session:A7-P1-A Paper #2216

Audio Information Research Laboratory

GTR-Voice

Articulatory Phonetics Informed Controllable Expressive Speech Synthesis

Zehua Kcriss Li, Meiying Melissa Chen, Yi Zhong, Pinxin Liu, Zhiyao Duan


Background and Motivation

Current speech synthesis excels in emotion but falls short in capturing **nuanced**

articulatory features achieved by professional voice actors.

- This study introduces a novel **GTR framework** and dataset to improve control over expressive speech synthesis by focusing on **Glottalization**, **Tenseness**, and **Resonance**.
- Experimental results show controllability in expressive TTS, with user studies confirming

GTR-based models in capturing articulatory nuances across various speech dimensions.

The GTR-Voice Dataset and GTR Controllable Speech Synthesis

Articulatory Phonetics Inspired Dimensions^[2]

Model Architecture

Glottalization^[3] **0-Whisper Voice 1-Slack Voice** 2-Modal Voice **3-Stiff Voice** 4-Creaky Voice

vocal folds are open

(abducted)

vocal folds come

(adducted)

- Tenseness^[4] 1-Laxest 2-Slightly Lax 3-Moderate 4-Slightly Tense 5-Tensest
- **Resonance**^[5] **0-Whisper Voice 1-Chest Voice** 2-Head Voice **3-Chest-Nasal Mix 4-Chest-Head Mix** 5-Head-Nasal Mix 6-Chest-Head-Nasal Mix

Dataset Description

□ 3.6 hours of 48Khz/24bits HQ speech audio □ 2500 clips, ~6 seconds each, representing one of the **125 unique GTR combinations**. together and vibrate

All recorded by a **professional** 30-year-old male Mandarin voice actor

Fully accessible under CC BY-NC-ND 4.0 license

- **FastPitch**^[6] Feedforward Transformer TTS model with pitch and duration predictors for mel spectrogram generation. We added three embedding layers to condition the encoder output on GTR labels.
- **StyleTTS**^[7] Two-stage TTS model that captures prosody and emotion. We replaced the style encoder with a **GTR embedder**, retaining other pre-trained components.

Training

- **FastPitch** Pre-trained on AISHELL3^[8] for **80 epochs**, then fine-tuned for **3000** epochs on GTR-Voice with GTR label embeddings.
- **StyleTTS** Pre-trained on Libri-TTS (460 hours) for 200 epochs. GTR embedder trained for 500 epochs using an RTX 3090, fixing other pretrained weights.

Experiments Result

Evaluation Setup User study with **60 participants**, **40 webpages** (20 Chinese, 20 English). Participants

compared model-generated speech with a reference and rated MOS.

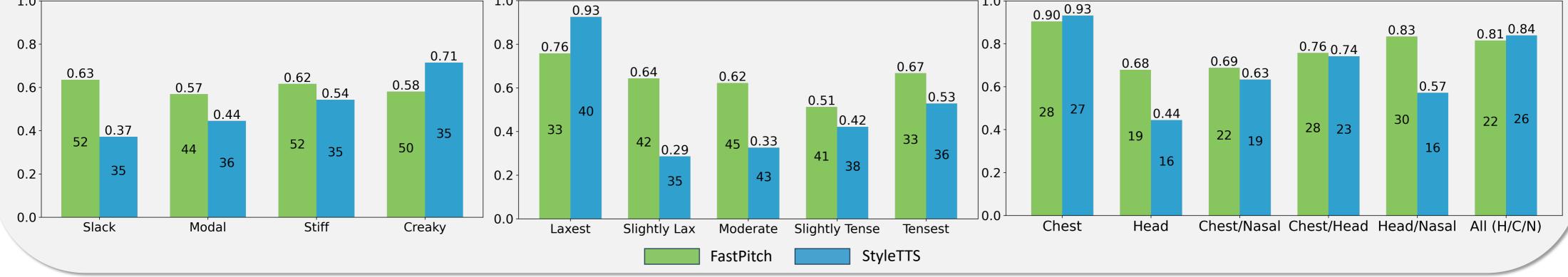
MOS Scores Both models scored above **3.00**, laying the foundation for controllability experiments.

GTR Controllability

Glottalization FastPitch: 67%, StyleTTS: 57%. Best for Creaky Voice, worst for Slack Voice (StyleTTS). **Tenseness** FastPitch led except for Laxest (StyleTTS: 68%). Significant accuracy gaps favoring FastPitch.

- **Resonance** Highest for Chest Voice (79% FastPitch, 71% StyleTTS). StyleTTS struggled with Head Voice.
- □ Models Average FastPitch: 67.07%, StyleTTS: 57.14%. Best for R dimension, lowest for G dimension.

Model	Quality [↑] (1-5)	Naturalness [↑] (1-5)
FastPitch	3.05 ± 0.05	3.14 ± 0.11
StyleTTS	4.21 ± 0.14	4.16 ± 0.12


1.0

Tenseness

Glottalization

0.8 0.76

Demo

Reference

[1] Figure 2: IPA articulation points (left) Human vocal tract (right) IPA (vowels, consonants) articulation points. [2] G. S. Nathan, The Sounds of the World's Languages. JSTOR, 1998.

[3] M. Garellek, "Voice quality strengthening and glottalization," Journal of Phonetics, vol. 45, pp. 106–113, 2014.

[4] J. Kuang and P. Keating, "Glottal articulations in tense vs lax phonation contrasts," The Journal of the Acoustical Society of America, vol. 134, pp. 4069–4069, 11 2013.

[5] H. Hollien, "On vocal registers," Journal of Phonetics, vol. 2, pp. 125–143, 1974.

[6] A. Łancucki, "Fastpitch: Parallel text-to-speech with pitch ' prediction," in in Proc. International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 6588–6592.

[7] Y. A. Li, C. Han, V. Raghavan, G. Mischler, and N. Mesgarani, "Styletts 2: Towards human-level text-to-speech through style diffusion and adversarial training with large speech language

models," in Advances in Neural Information Processing Systems, vol. 36, 2023, pp. 19 594–19 621. [8] Y. Shi, H. Bu, X. Xu, S. Zhang, and M. Li, "AISHELL-3: A Multi-Speaker Mandarin TTS Corpus," in Proc. Interspeech, 2021, pp. 2756–2760.

[9] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, "LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech," in Proc. Interspeech, 2019, pp. 1526–1530.

To learn more about the GTR-Voice. visit https://GTR-Voice.com